Izbornik predmeta
Diferencijalni i integralni račun I
|
|
|
Info
Ovaj predmet nije moguće upisati.
Obavijesti
Dragi kadeti,
nastava se u subotu, 25.10. održava prema rasporedu od ponedjeljka (od 14:25 u učionici 37).
Nadam se da se vidimo u što većem broju. Ako će neki od vas malo kasniti zbog dežurstva na smotri, javite se e-mailom prije dolaska (može se pričekati 10-ak minuta s početkom nastave) i radije dođite na nastavu sa zakašnjenjem nego li da uopće ne dođete.
U subotu ćemo obraditi: diferencijal funkcije i pravila deriviranja.
Gradivo prvog kolokvija je zaključeno s poglavljem "Limes funkcije" završenim u ponedjeljak, 20.10., ali vam svakako preporučam da nastavite pratiti gradivo kako ne biste ušli u probleme praćenja nastave u nastavku semestra.
Objavljeno: jučer u 09:36
Ilko Brnetić
- piše se u ponedjeljak, 27.10. od 14:25 do 15:15 (produljenje pisanja od nekoliko minuta, u slučaju potrebe, je moguće, kao i inače na ovim ispitima)
- s obzirom da derivacije i integrali nisu gradivo prvog kolokvija, nikakav podsjetnik nije potreban niti je dozvoljen
- korištenje bilo kakvih pomagala nije dozvoljeno (npr. korištenje računala nije dozvoljeno)
- sve elektroničke uređaje (npr. mobitele, pametne satove), ukoliko ih ponesete sa sobom, morate isključiti i pospremiti/udaljiti od sebe (ne smiju vam biti na dohvat ruke)
- u učionicu molim dođite 5 minuta ranije kako bi se, prije početka pisanja, mogli rasporediti, a i dobiti, usmeno od dežurnog nastavnika, sve potrebne upute
- svoje odgovore i postupke rješavanja pisat ćete na testu na za to predviđenim mjestima, a dobit ćete i dodatni papir za pisanje u slučaju da za postupak rješenja nekog zadatka ne budete imali dovoljno za to predviđenog mjesta
- s obzirom na navedeno, sa sobom trebate imati isključivo pribor za pisanje i crtanje
Objavljeno: danas u 12:35
Uređeno: danas u 14:48
Ilko Brnetić
- ispit vrijedi 20 bodova (kvant bodovanja je 0.5) i sastojat će se od pitanja kratkog odgovora (8 bodova), pitanja višestrukog izbora (2 boda) i pitanja produženog odgovora (10 bodova)
- gradivo ispita čine poglavlja "Funkcije" i "Limes funkcije" obrađeno zaključno s nastavom u ponedjeljak, 20.10. (obuhvaćaju gradivo koje je obuhvaćeno s prvih 5 domaćih zadaća)
- na pitanjima kratkog odgovora vrednuje se samo konačni rezultat (iako možete napisati dio postupka, ukoliko vam je potreban)
- na pitanjima višestrukog izbora odabire se točan odgovor između više ponuđenih, a mogući su i negativni bodovi u slučaju pogrešnog odabranog odgovora (na testu će biti jasno naznačeno pravilo o dodjeljivanju pozitivnih i negativnih bodova)
- na pitanjima produženog odgovora vrednuje se postupak i rješenja zadatka (postupak treba biti detaljan i jasno napisan)
Ostvarena pozitivna ocjena pisanog ispita putem kolokvija vrijedi i za usmeni ispit nakon kolokvija, ali i na prvom zimskom roku.
Ne postoji prag koji se mora ostvariti na svakom (nekom) od kolokvija/međuispita; za pozitivnu ocjenu potrebno je u zbroju bodova s tri kolokvija ostvariti 24 boda (od ukupno 60 mogućih).
Objavljeno: 13. 10. 2025. u 20:08
Uređeno: danas u 12:49
Ilko Brnetić
Na dan prvog međuispita, u ponedjeljak, 27.10., plan je sljedeći:
- 14:25-15:15 pisanje prvog kolokvija*
- 15:15-15:30 odmor*
- 15:30-16:00 drugi sat predavanja
- od 16:00 (ako ima zainteresiranih) prezentacija rješenja prvog kolokvija
*izgubljenih 60 minuta nastave ćemo nadoknaditi (vjerojatno samo djelomično, oko 30 minuta) produljenjem nastave u dva ponedjeljka u drugom ciklusu.
Objavljeno: 21. 10. 2025. u 13:35
Ilko Brnetić
Objavljeno: 3. 10. 2025. u 10:08
Ilko Brnetić
Objavljeno: 13. 10. 2025. u 19:46
Uređeno: 20. 10. 2025. u 18:40
Ilko Brnetić
Funkcije
- iščitati s grafa funkcije domenu i sliku funkcije
- provjeriti na grafu je li funkcija bijekcija te, ako nije, odrediti intervale na kojima jest bijekcija
- odrediti postojanje inverza, odrediti inverz i skicirati inverznu funkciju
- ispitati je li funkcija parna, neparna, periodična
- znati baratati transformacijama grafa funkcije: translacije, skaliranja, zrcaljenja
- poznavati elementarne funkcije (funkcija potencije, polinomi, racionalne funkcije, eksponencijalna i logaritamska funkcija, trigonometrijske i arkus funkcije) i naučiti osnovna svojstva tih funkcija, te naučiti njihove grafove
- odrediti prirodnu domenu i sliku složenih funkcija
Limes funkcije
- usvojiti pojam limesa funkcije
- iščitavati limese (granično ponašanje) na grafu funkcije
- razlikovati određene i neodređene oblike limesa
- znati izračunati određene oblike limesa
- izračunati limese s neodređenim oblikom raznim metodama svođenja limesa na određen oblik
- usvojiti pojam neprekinutosti funkcije
- ispitivati neprekinutost funkcije
- nacrtati graf funkcije neprekinute na svojoj domeni s danim podatcima o monotonosti funkcije i ponašanju na rubu domene (limesima na rubu domene)
Derivacija funkcije
- razumjeti pojam i značenje derivacije i diferencijala; znati geometrijsku i fizikalnu intepretaciju pojma derivacije
- znati definiciju derivacije funkcije pomoću limesa
- znati po definiciji izvesti derivacije osnovnih funkcija
- naučiti pravila deriviranja za umnožak, kvocijent i kompoziciju funkcija, kao i pravilo za derivaciju inverzne funkcije, naučiti izvesti ta pravila kao i znati izvesti derivacije nekih elementarnih funkcija koristeći ta pravila
- znati odrediti jednadžbu tangente na krivulju u nekoj točki ili tangente na krivulju koja zadovoljava neki uvjet
- naučiti derivirati funkcije zadane implicitno i parametarski
Primjena derivacije
- naučiti primijeniti diferencijal funkcije za približno izračunavanje vrijednosti funkcija
- znati odrediti intervale monotonosti i lokalne ekstreme funkcije pomoću prve derivacije funkcije
- rješavati probleme ekstrema funkcije s primjenom u geometriji i sl.
- naučiti L'Hospitalovo pravilo i primijeniti ga u raznim slučajevima kada imate neodređeni oblik limesa funkcije
- znati odrediti intervale konveksnosti i konkavnosti funkcije i točke infleksije pomoću druge derivacije funkcije
- znati nacrtati kvalitativni graf funkcija koristeći derivaciju i limes funkcije
Integral
- znati odrediti sve primitivne funkcije za danu funkciju ili jednu od njih uz početni uvjet u nekim primjerima
- znati definiciju određenog integrala i njegovu interpretaciju kao površinu ispod grafa funkcije
- naučiti da je integriranje inverzna operacija od deriviranja i znati primijeniti Newton-Leibnizovu formulu te znati dokazati te tvrdnje (odgovarajuće teoreme)
- naučiti integrirati koristeći izravno integriranje (korištenjem osnovne tablice integrala i svojstva linearnosti integrala) te integiranje korištenjem metode supstitucije ili metode parcijalne integracije i znati dokazati formule za metodu supstitucije i parcijalnu integraciju
- naučiti kako integrirati racionalne funkcije
- naučiti pojam nepravog integrala s limesom u beskonačnosti i nepravog integrala neomeđenih funkcija i znati ih izračunati
Primjena integrala
- znati izračunati površinu lika pomoću određenog integrala
- znati izvesti formulu za izračunavanje duljine luka ravninske krivulje i korištenjem te formule znati izračunati duljine dijelova nekih ravninskih krivulja
Objavljeno: 11. 1. 2021. u 17:41
Uređeno: 19. 1. 2025. u 17:44
Ilko Brnetić
Teorijski sadržaji koji su dio ispitnog gradiva predstavljaju:
- poznavanje definicija osnovnih pojmova vezanih uz funkcije,
- poznavanje definicije neprekinutosti funkcije, definicije derivacije funkcije, izvod tvrdnje da derivabilnost funkcije u točki povlači neprekinutost funkcije u točki, znanje pravila deriviranja zapisanih općenito te izvoda pravila deriviranja i znanje izvoda derivacija elementarnih funkcija,
- poznavanje definicija definicije određenog i neodređenog integrala te poznavanje osnovnih rezultata (teorema) i njihovo razumijevanje, ali i dokaze nekih teorema, i to Teorema 11.3.2. (konstrukcija primitivne funkcije pomoću određenog integrala), Teorema 11.3.3. (Newton-Leibnizova formula) i teorema vezanih uz provedbu metoda integracije (metode supstitucije i parcijalne integracije) kao i objašnjenje formule za izračunavanje duljine luka krivulje pomoću određenog integrala.
Objavljeno: 4. 1. 2021. u 14:13
Uređeno: 18. 9. 2024. u 11:52
Ilko Brnetić
Temeljni ishodi (nužni za ocjenu dovoljan) su:
- iščitati s grafa funkcije domenu i sliku funkcije
- odrediti inverz funkcije
- znati baratati transformacijama grafa funkcije: translacije, skaliranja, zrcaljenja
- poznavati elementarne funkcije, znati nacrtati njihove grafove (funkcija potencije, eksponencijalna i logaritamska funkcija, trigonometrijske i arkus funkcije)
- znati rješavati jednostavnije jednadžbe i nejednadžbe (prilikom određivanja prirodnih domena funkcije i sl.)
- znati izračunati određene oblike limesa funkcije
- razumjeti i znati značenje derivacije, tj. znati geometrijsku i fizikalnu interpretaciju tog pojma i znati definiciju derivacije funkcije pomoću limesa
- znati pravila deriviranja za umnožak, kvocijent i kompoziciju funkcija i primijeniti ih prilikom deriviranja konkretnih funkcija
- znati odrediti jednadžbu tangente na krivulju u nekoj točki krivulje
- znati odrediti intervale monotonosti i lokalne ekstreme funkcije pomoću prve derivacije funkcije
- znati nacrtati kvalitativni graf (jednostavnijih) funkcija koristeći derivaciju i limes funkcije
- znati odrediti sve primitivne funkcije za danu funkciju ili jednu od njih uz početni uvjet u slučaju kada je taj postupak jednostavan
- znati definiciju određenog integrala i njegovu interpretaciju kao površinu ispod grafa funkcije
- naučiti da je integriranje inverzna operacija od deriviranja i znati primijeniti Newton-Leibnizovu formulu
- naučiti integrirati koristeći izravno integriranje (korištenjem osnovne tablice integrala i svojstva linearnosti integrala) te integiranje korištenjem metode supstitucije ili metode parcijalne integracije na jednostavnijim primjerima
- znati izračunati površinu lika pomoću određenog integrala
Objavljeno: 11. 1. 2021. u 17:42
Uređeno: 19. 1. 2025. u 17:43
Ilko Brnetić
Dragi kadeti,
u akademskoj godini 2025./26., pravila ocjenjivanja kolegija uključivat će sljedeće elemente:
- praćenje nastave tijekom semestra (ukupno 60 bodova)*
- pisani dio ispita (ukupno 60 bodova)
- usmeni dio ispita (ukupno 80 bodova)
Za pozitivnu ocjenu morate ostvariti sljedeće uvjete:
- pozitivnu ocjenu pisanog ispita (barem 24 boda)
- pozitivnu ocjenu usmenog ispita (barem 36 bodova)
- barem 1 bod iz praćenja nastave tijekom semestra (*1 bod se primjerice dobiva samo za redovito pohađanje nastave koje je i inače obavezno)
U slučaju ispunjavanja gore navedenih uvjeta, bodovi za pojedine ocjene su sljedeći:
61-95 dovoljan (2)
96-130 dobar (3)
131-165 vrlo dobar (4)
166-200 izvrstan (5)
Detaljnije informacije možete pročitati u nastavku obavijesti ("pročitaj više").
Objavljeno: 22. 9. 2025. u 19:48
Uređeno: 4. 10. 2025. u 12:12
Ilko Brnetić
Objavljeno: 16. 1. 2022. u 14:53
Uređeno: 10. 1. 2025. u 19:03
Ilko Brnetić
Objavljeno: 19. 9. 2024. u 12:38
Ilko Brnetić
|
|
|
|
|
|
|